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ON THE NATURE OF THE 

RADIAL AND CROSS  TRACK ERRORS 
4 

FOR ARTI'FICIAL EARTH SAT3LLITES 

N. L. Bonavito 
R. A. Gordon 
J. G. Marsh 

ABSTRACT 

In  this  paper we discuss  the  arlalysis of the  radial and cross   t rack   e r rors  

of artificial  Earth satellites in terms of the  interference of two  one  dimensional 

celestial  mechanical wave trains.  The  resulting equaticins for  these  tracking 

errors  describe  the.  behavior of the  mcertainties  in  the  orbitd parameters as 

oscillatory in nature, with a rapidly  oscillating  term, which is a function of the 

sum of the  observed  and  computed  orbital  frequencies,  modulated in amplitude 

by a slowly  varying  oscillation.  This latter term is itself h function of either 

the  difference  between  these  orbital  freqencies  or  between the  values of the 

computed and observed  right  ascensions,  depending upon whether it is the  radial 

or cross  track  case  under  consideration. In theoretical  physics,  this effect is 

referred  to as the phenomenon of beats and is common  in  the  physics of sound 

andelastic  media. These results  indicate  that  the  cross  track  calculation  describes 

the  behavior of uncertainties  in  the  right  ascension of the  ascending node and 

the inclination,  while  th 3 radial :alculation  gives  information  on  uncertaintieB in 
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the  semi-major axis, the  eccentricity, and  the  argument of perigee.  Analysis is 

done  'for  the U. S, A i r  Force Cannonball (OAR-901) and GEOS-II satellites. 

In addition,  expressions  for  the radial and crow  track  oscillatory fre- 

quencies are obtained  in terms of the  orbital  frequencies of the  satellites.  These 

oscillatory  frequencies  are  functions only of the zonal harmonic + .: :ms of the 

Earth's  gravitational  potential,  and are used  to analyzg the  behavior of the 

tracking errors in te rms  of uncertainties in the  gravitational  field  coefficients. 

Finally, we show that  the  time  average of the  radial and cross   t rack errors 

in my  case,  will both  approach  aero. 

_. 
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I. MTRODUCTION 

There  has  been  considerable  interest  in  the  error  analysis of spacecraft 

. .  trajectory  systems.  Error analysis can  be  defined as the  ability  to  describe 

the  effect of inherent  uncertainties  of'an  overall  orbital  determination  system 

on  the  computational  accuracy of the  system.  There  are  several  sources re- 

sponsible  for  the  presence of such  urcertainties, with  perhaps  the  most  im- 

portant  due  to  the  inability to correctly  describe  the  physics of the  problem. 

As a result,  the  physical  data  that is used, and the  modelling of the forces involved, 

provide  at  best,  only a good starting  point  for  the  calculation of an orbit.  The 

accuracy of the  observational  data  will  depend upon the  type and quality of the 

trackipg  technique  that is employed.  Even  after  fitting an orbit,  the  post con- 

vergence  residuals do  not account  for  uncertainties  in  coordinates of the  track- 

ing sites. More  impmtant,  even though :he constants of integration  may  be  well 

determined,  the  accuracy of 'ihe calculated  orbit will still depend  upon the  accu- 

racy of the differential  equations of motion. In any event,  the  overall  uncertainty 

in  the  calculated  coordinate6 of a spacecraft  can be defined  within the  frsmework 

of a time  dependent  error bound (Reference 1) .  One method of studying  the effect 

of uncertainties  in  orbit.determination is to  examine  the  radial and cross   t rack 

e r rors .  The cross   t rack  error  is defined as  the  difference  at any instant of 

time,  between  the  position  vectors of an observed and calculated, or two  calcu- 

lated  orbits,  projected in the  directionof  the  unit  angular  momentum  vector of 

one of these  systems,  provided  that both systems are consemative  ones. In 

1 
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addition,  the.radia1  error is defined as this same difference  projected  along  the 

instantaneous  unit r ~ d i u s  vector of one of the  orbits. If the  orbit  system  can 

be  considered as a corservotive one, then  calculation of the  radial  and  cross- : 

track errors can  be  used to study  errors produced by various  gravity  models. 

Such results are oi considerable  importance  in  the  field of geodesy. 

In this  paper we shall  review  these  concepts  in  the  light of classical theo- 

retical physics and ( ompare  the  results with real  and simulated  data of variolls 

orbit  systems. 

II. STATE:i\'TNT OF THE PROBLEM 

Let  us now define an inertial  coordinate  system,  fixed at the  Earth's  center 

with the  x-axis  pointing  toward Aries, z through the geographic  North  Pole, 

and y se t  so as to  form a righthanded  system.  Then  the  observed  positior.  vector 

of a point mass  in  orbit is given by To = 7 x. +? yo + k zo, where '1: and k 
-. 4 

are the orthogorral  unit  vector set. The  observed  velocity is given by Go = T vx + 

' ivy + k vz , and the  computed  values of these  quantities are designated as = 
+ 

above  discussion we then  have  that  the  cross  track  error 

4 I 
i 

where co = eo x Fo), andAr'= (Fo - Fc). The  radial  error h given by 
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Before  proceeding with a theoretical  analysis,  let us briefly  examine  these two 

equations. If we assume  that our system  is  a conservative  one,  that is, i f  there 

are no forccs  present draNIing ecergy from  the  orbit,  then we have  that  the 
. .  

. Hamiltonian,  nzmely,  the  kinetic  plus  potential  energy, i s  the  total  energy. In 

addition,'if  time is not  explicitly  present,  then  the  Hamiltonian is also a constant 

--of the  motion  Furthermore,  the  total  angular  momentum  and  the z-component 

of angular  momentum are constants of the  motioa. Now thr? gravitational  potential 

energy  can  be  written as a generalized  solution of Laplace's  equation,  namely, 

I" 1 

where is the  product of the  gravitational  constant  and  the  planet's  mass, r; 

is its equatorial  radius, r and d are the  planetocentric  distance and colatitude 

of a field point, Cnmm and Sn,m are the  coefficients of potential, A is the  angle 

of east longitude, and P; (cos e )  are the  associated Lc:gond:.:c functions. In 

practice,  one tries to include  all  forces  in  nature  acting on the  system  in t h e  

Hamiltonia,  and in  the  process of orbit  determination, a complete  knowledge 

of the  geodetic  constants  and  coefficients of the  Earth's  gravitational  potential 

is necessary  for  perfect  orbit  calculation.  Since  such  information is not  available, 

and in addition,  since  present  computational  techniques are insufficient to main- 
- 

tain agreement with  observation for more  than a few  days,  then it is customary 

to compensate for these  errors  by reinitializing  the  constants of integration 

through a fitting  procedure by comparing  theory  with  observation  over an arc of 

3 
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several  days. However, it appears  that  there  may be a Limitation  to what we may 

know &out  the  gravitctional  field. For example,  the  possibility of mass  trans- 

milligal  change  in  the  local  value of gravity. In azy event,  such  considerations 

seem to place 2 temporary i f  not  permanent  restriction  on a complete  theoretical 

description of the  gravitational  field xc! the  subsequent  accuracy of the  pre- 

dict.ed positions of a spacecraft. 

In spite of such  limitations  however. we czn still  make  the  following 

rationalizations:  Since the  tots1 energy,  and  the  angular  momeutum are constants 

of the  motion,  then  the  energy  difference of the  computed and observed  orbits 

which is manifest  through  the  spacecraft I adius  vector by way of the semi- 

major axis, is a bound quantity. As a consequence, one might  expect the radial 

error to be bound, and since  the  angular  momentum is conserved,  .the  cross-track 

port  in the Liquid odter core  of the Earth, even if uniform,. would still give rise 

?a density  fluctuations.  In  addition, mass transport arising from rapid first order  

phase  transitions  (condensation Qf matter  under  enormous  pressure)  within  the 

lithosphere  could  create  local  density  changes which would correspond  to a 

creation  and  destruction of hig!ler order  coefficients  in  the  gravity  field.  More 

advance6  theories  indicate  that  rapid first order  polymorphic  phase  transitions 

may be  the  source of deep  focus  earthquakes,  manifesting as irregularit ies or 

breaks  in the Chandler wobble uf the  Earth.  It is also estimated  that  during 

such an event,  enough mass is shifted so 3s to  cause as much as a 0.1 to 0.4 

j 

! 

would be likewise. 

4 
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III. INTERFERENCE OF WAVES 

The  problem  that now suggests itself from  the above  discussion, i s  t h e  

nature of the  tracking  errors  arising  from  an  inability  to  properly or adequately. 

specify  the  potential  energy  through  the  coefficients of the  gravitational  field. 

In actual  practice, trackjng e r r o r s  are often  calculated by one of the  following 

methods: For a given potential  energy, two partially  overlapping  arcs of fitted 

data are obtained on a spacecraft by comparing  observations of position  and 

velocity with those r:aiculated using the  given  potential.  The  positions and 

velocities  in  each of the  overlapping  portions of the fitted arcs corresponding 

to a pnrticular  time  are  then used in  equations (1) and (2) to  determine  the 

c ross  and radial   track  errors.  In  this case, the  potential is fixEd, and the 

coordinates (wivhin the  fitted arcs) are changed.  In the  other  case,  positions 

and velocities of two  slightly  different  orbits are compared at corresponding 

t imes,  and the  tracking  errors are a g a h  computed for  each of these  times. Here 

the  initial  conditions  and the  equations of motion are the  same,  but  values of 

the coefficients of the  Earth’s  gravitational  potential  differ  slightly  for each 

orbit . 
Technically  speaking,  interference is a term  referring  to  the  physical 

effects of superimposing two or more wave trains. As in  the case of elastic 

media, it is desirable to defin?  a ‘wave equation’ which contains  information on 

the  behavior of thc  system. We now consider t h e  polar  equation of an ellipse, 

I 



1. 

.- 

: a  

. .  
I 

!. 

. .  
. .  . .  

8 

r = .a(l - c c 3 s  E) 

! 
where a. e,  and E are the  semi-major axis, eccentricity,  and  eccentric  anomaly 

respectively. A one  dimensional  representation of this  equation is obtained  by 
. .  

multiplying by the  cosine of the   t rue anomaly.  Therefore, 

y = r cos v = a ( l  - e cos E) C O S  Y, 

and usirg the anomaly  conncction for the  true  and  eccentric  anomaly, 

I 

(4 1 

cos Y =-- * 
(COS E - C )  

1 - e cos E 
(5! 

This is our  one-dimensional wave  equation for elliptic  motion of an  artiIicial 

satellite,  referenced to the  major axis of rhe  ellipse. 

Let us now consider  two  waves of equal frequency  and  amplitude  travelling 

with the  same  speed  in  the  same  direction,  but with a phase  difference 4 between 

them.  Therefore, with the  conditions  that a, = a ,  = a, e ,  # %,  and E = %It. we 

have for the  two  waves 

(7 1 y, = a cos(2nf l t )  - acl 

y,  :: n cos(2?7f, t - $) - ne,. 

I 

I 

! 
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The resultant wave \:hich is the  difference of equations (7) and (8) is, 

i. 

From the  trigosorr.etric  equation for the  difference of the  cosines of two angles. 

c o s A - c o s B = - 2 s i n - ( ( A t S 3 ) - s i n - ( A - J t ) .  1 1 
2 2 

(9) 

we obtain, 

This  resultant wave corresponds to a new  wave having  the  same  frequency f ,  

but  with an amplitude, Z a - s i n ~ / 2 .  If 2 is very  small,  the  resultant  amplitudc 

will be nearly zero. As a resul.t,  equation (10) suggests  that  the  radial t. .=king 
# 

error as given by equation (2) #.ill oscillate with the  same  frequency as rhc 

orbital frequency  but  with  amplitude  dctermined by any  phase  difference txtween 

the  computed  and  observed  orbits. A phase  difference  in  the  ecceniric  anomaly 

however, is equivalent to one  in both the true and the mean .anomaly also.  S'nce 

the  orbital  periods are the  same  herc,  then a phasc. difference  between  thc  two 

eccentric  anomalies arises for example  fram a lmcr determination cf the 

argulr.cnt of pei'igee. Near the kginni rg  of the orbit Lhrr<-forc, this  uncertainty 

in  the  argument of perigee will  be a factor in the  magnitude 01 the rapid 

oscillatory  term of equation (10). 

7 1 
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Let us  now consider  the case of two wavetrains  similar  to  the  above, but 

with slightly  different  frequercies,  travelkg  through  the  same  region. The two 

displacements can be represented as 

The  differewe is 

The  resulting  vibration  may  then be considered  to  have a frequcncy 

- f ,  t f ,  
f = " 

2 

which is the  average of the two waves, and an amplitude  given by the  expression 

in the  brackets.  Therefore,  the  amplitude  varies with time rith a frequency: 

f a  - f2 s = -. 
2 

If f, and f ,  are nearly  equal, this t e rm is small  and  the  amplitude  fluctuates 

shwly.  This phenomenon is a form of amplitude  modulation and is commonly 

referred to as 'beats'. A beat, or a maximum of amplitude  will  cccur  whenever 

! . I  
I 
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equds  1 o r  -1. In orbital  motion,  the  frequency of rotation is governed  primarily 

by the  value of t' scmi-major  axis.  This  demands  that y1 and yz of equations (11) 

and (12) contain  difierent  values of a, which  would result  in a numerical  determi- 

. .  
nation of yl - y2 versus time. However,  since  ampl'tudes  only add together 

algebraically,  the  general  behavior cjf the  system is still described analytically 

by  equation (13). The  interference of two waves of different  amplitudes, fre- 

quencies, air! Dhases, would ordinarily result in a distorted complex waveform, 

but  the  ,analysis of equations (1) and (2) can he made  more  directly  through 

equations (10) and (13). Equation (13) implies  that  errors  in  the  computed  value 

of the  semi-major  axis, and to a lesser  degree,  tht.  -centricity  and  argument 

of perigee  determine  both  the  amplitude and the f.-equency of the  envelope of the 

radial tracking e r r o r  (Figure 1). Equation (13) indicates  that  any  distortion in  

the  envelope is due  to a t iming  error in  the  mean  momaly. If the  semi-major 

axes of the two systems.under  comparisons are almost  equal  initially,  then  the 

correspondilqr  frequencies or periods are likewise  almost  identical.  Because 

of this,  the  advance of perihelion for each  orbit  is  approximately  the same, and 

t h e  angu!ar difference  between  each  perigee  (or  apogee)  increases  slowly. 

When this  difference is n ,  the  respective  apogees  are exact111 out of phase,  and 

t h e  msgnitude of their  difference  is at its maximum.  This is also  the  maximum 

of the  amplitude of equation (13). If the  periods are long, a~ i in  addition, i f  

they are close  in  value,  then  the  time  between  sdcceeding maxima map  be  very 

large. Figure 2 shows a plot of the  radial   error  versus time ;or the  cannonball 

9 
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(OAR-901) satellite (a = 8355.34 km. e = 0.123, a d  i = 92.00 degrees).  The 

graph \vas g e n e r a t 4  using  the  Brouwer  theory of artificial  satellite motion 
. .  

(Reference 2). For  the  calculatior.,  the  potentials used only the  f irst  two zonal 

harmonics, with the  second  zonal  2oefficients  given by J, = -1.OE25 X lo-' and 

Ji = 0.90 x J,. in  this  case,   the  pxiod between maxima  (or  minima) is approxi- 

mately 120 days  (Figure 2). The  value of  Lhe eccentricity  determIces  the 

symmetry  character o l  the  oscillation. Ii e is much  different  from  zero,  then 

Kepler's law demands t h a t  the  spacecraft  spend more time  near  apogee. When 

the  two orbits are  essentially  coincidental,  the  por'5onal  differences  are 

smallest As the angle between  the  major  axes  increases,  these  differences 

increase, and the  maximum is obtained when this  angle i s  n, and rs described 

above, when the  spacecraft are at their  respective  apogee  points.  Between 

n and Zn, the  position  differences  decrease,  becoming a minimum at 277. i f  the 

reference orbit is 'larger'  that is, i f  the  semi-major  axis of the  reference 

orbit is larger than  that of the  'computed'  orbit,  then  radial  error  will 'arc' 

positively. As the angle between the  positional  differences,  in  the  plane of the 

reference  orbit  increases,  the  magnitude of their  difference  will  also  increase, 

and the envelope of equation (13), given by 

L 

will  also reach its maximum  value  given  by twice t h e  

time for this to occur  will depend on the  value of f ,  - 

10 

I 

I 
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* i  
i semi-major axis. The 

f,. In Figure 2, the 
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maximum  of.the  variation i s  approximately IG,OOO km. The  constant  term 

a(e, - e,) also  represents a shift about which the  radial  error  oscillates. 

1 
i., a 

t; and equation (13). shows the following: An 'error '  or &certainty  in  the 
:. I , 

a eccentricity will  appear as a shift  along  the  ordinate axis, about  which  an p 

We can now summarize  bricfly. A conparison of a plot of equation  (2) 

-.  I 
f oscillation  in  tlme of the  radlal  error  occurs.  This  oscillation is of frequency 

(fl +fl)/2wheref,  and f2 represent a computed  and  observed  orbital  frequency. I 
1 
[ 

i; 
). 
L This rapid  oscillation which is close  to both f, and f, is then  modulated  by a much 

h lower  freqmncy  oscillation of value (f, - f,)/2, and  with  amplitude 2a. The 
h 

frequency of the  orbit  varies  inversely as the  period,  and  the  period is a function 

of the  semi-major =is. A s  a result, a difference  between  the  computed  and 

observed  valies of the  semi-major  axes  results  in a finite value of f l  - f 2 ,  and 

a slow modulation of the  rzpid  radial  oscillation  appears.  The  result 

E 
5' 
6: 1 
& 
:' 
b 

5 suggests a beat phenomena.,  common  in  the  theory of sound. The  beat  frequency 

I: 

E 
t I' 

F period of the  beat  phenomena  becomes large. 

is given  by (f l  - f,)/2, and as f ,  approaches f 2 ,  that is, as the  difference  between 

the  computed  and  observed  values of the  semi-major axes approaches  zero,  the 1 

I T  

b 
1 -  
f 

W e  now turn  to the discussion of the  nature of the  cross  track  error  given 

by  equation (1). Let us assume  that at the initial  time,  the six orbital  param- 

eters which describe  the  computed  system  differ  slightly  from  those of the 

-. e . 
i. observed  orbit. At some later time, we also  assume  that  the  component 
t 

of the  positior  vector of the  spacecraft  from  the  observed  orbit  into 

Y 
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E 
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the  corresponding  line of nodes is r2 cos  u2,  where r, = a, (1 - e, cos E,), 

up = .d2 + v,, w2 i s  the  argument of perigee, and v2 i s  the trce ancmaiy. For 

the  computkd  orbit, we  have  similarly, rI cos u1 along  its  line of nodes.  The 

.wave trains, represented by r2 cos up apcl r, cos u1 need  .to  be  referenced 

to  a common axis to  discuss  interference  effects.  However,  €or  the  cross- 
.. 

.. t r ack   e r ro r  component,  Be  need  the  perpendicular  component of t h e  observacon 

on the  calculated  orbit,  and  hence,  we  wish.'to have the two  wave trains interfere 

with  each  othcr  but at right an&les. Physicaily,  this is the  same as sighting 

parallel tG the rl cos u1 wave, and observing  the  oscillatory  behavior of tt.e 

r, cos u, wave with respect to  the  first.  T!?erefore,  the  projection of r2 cos  u2 

onto  the  line of nodes of the computed  orbit is given by r, cos u,-sin (n, - 0, ), 

where SI, and n, are  the  respective  right  ascensions of the  ascending  node for 

each  orbit.  Since  the  observed  system  is  inclined at an angle i, , the  projection 

is not perpendicular  to  the  comput4  orbii.  The  perpendicular  component is 

obtained by a rotation throl.gi1 this inclination.  The  res.ult is 

. >  However,  since  the  observed and  computed  orbits are not  parallel,  there is 

another  contribution  to  the  cross-track  tern1  originating from the  discrepancy 

1. . i  
# 

in the  inclinations.  Results  show  that both this   term and its variation are 

very  small.  Nevertheless, its contribution is, 

12 
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- v l  - cj: s i n  G:, s i q  E, - cp cos 
- 

+ a , ( l  - e2 cos E2) s i n ( i ,  - i l ) .  (16) 

If e is sufficiently small ,  we  have, 

y = a, [ s i n  i; s in (R2  - n,) - cos(E, + w 2 )  + s i n ( i ,  - i,)]. (17) 

The  mgular  velocity of the  eccentric  anomaly is much greater than  that of the  argu- 

ment of perigee (usually two orders  of magnitude), so that the  cross-track  error 

displays a rapid  oscillation with a frequency  approximately  that of the  orbital 

frequency,  modulatcd by a slowly increasing  sinusoidal  function with maximum 

amplitude a2  sin i , . This is again analogous to  be& phenomena,  and  the 

respective  maxima are obtained when the two orbit  systems  diffx  in  their 

values of the ascending  rode by 7112. Figure 3 shows a plot of the  cross-track 

error for  t h e  Cannonball  satellite  using  the ahovc values of J, and J;. The  beat 

period or that  period  between  successive  minima (or maxima) is seen  to  be 

approxintately 870 days for this case. Equations (16) and (17) suggest that as 

the values of the  computed and observed  right  ascensions  become  more in 

agreement,  the beat period  becomes  progressively  larger, with a maximum 

I ’  
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amplitude of a s in  i.. In  our  example, i = 92O. s o t h a t s i n i z  1, and the  maximum 

(.heoretical  cross  track  amplitude  according  to  equations (16) and  (17) is approxi- 

mately 8000'km, which is in  close  agreement to that  given by equation (1). 

Figures '4 and 5 illustrate t.he use  of equations (1) id (2) in  the  determina- 

tion of the  cross and radial  tracking  error for a small portion of the  orbit of the 

GEOS-II satellite {a = 7700.00 krn. e = 0.032, and i = 105.80 degrees).  The tracking 

data  consisted of Navy Tranet Doppler observations  recorded by a globally  dis- 

tributed set of tracking  stations.  The  orbits were computed using the GSFC 

GEM-1 (Reference 3) and  the S A 0  1369 (Reference 4) Standard  Earth  gravity 

models.  Perturbations  due to solar-lunar  gravity,  direct  solar  radiation  pressure, 

and air drag were also modelled in  the  solutions, so that  the  primary error 

source  is  the  Earth's  gravity  field.  The  orbital  solutions were obtained using , 

tiie GEODYN orbit and geodetic  parameter  estimation  system. For both the 

GSFC GEM-1 and S A 0  1969 cases, orbital arc lengths of two days  were  used 

covering  tne  periods 12 hours, 15 minutes of May 23. 1968 to 12 h w r s ,  15 minutes 

of  May 25,  1968, and 12 hours, 15 minutes of May 24,  19G8 to 12 hours, 15 minutes 

of May 26, 1968. The  cross and radial  tracking  errors wrxe  determined  during 

the one  day  overlap  from 12 hours, 15 minutes of May 24, 1968 to 12 hours. 

15 minutes of  May 25,  1968. Because of the  short  period over which the  calcula- 

tions were performed.  the  periods of the  beat  phenomena  for both the radial 

and cross   t rack   te rms  are not shown. According to  equations (13) and (17). 

the corresponding  maxima are 15,400 km and 7700 lux respectively  for  these 
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fitted  arcs. An examir:ation of the  radial  error  for  the GEM-1 case shows  a 

slowly  increasing  envelope,  but with a downward drift,  indicating  that  the 

computed  value of the  semi-major axis is  larger  than  the  observed  value. To 
. .  

. determine  this  latter  value, we would proceed  in  the  following  manner: The . .  

17 

radial oscillatory  period, H is read off  of the  graph  (Figure 4 o r  5) .  From  this, 

Using  the  fitted  data  for  this  arc,  the  computed  period f, is calculated by 

r = 2nC(-1/2 .3/2 
E (19) 

where a is obtained from  the  orbit  improvement  process.  Therefore f,  = UP,. 

The  observed  freyuency f ,  is then  given by 

f, = 2f - fc. 
- 

1 

: 

1 Po = r. 
0 

From  the  expression for the  period  such as er,uation (19). the  observed  value of 

the  semi-major  axis  is  obtained.  The  difference between this and the  fitted 

value of the st-.-ni-major axis gives u s  the  discrepancy  in  the  latter. Figures 4 

and 5 are not  sufficiently  expanded  to give accurate  values of and a (e, - e , ) .  

The  magnitudes of the  radial  error5  for  these two graphs indicate a slightly 

more serious phasing p rodem or uncertainty in  the  argument of perigee  for  the 
1 
i 

15 
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Standard  Earth  solution. O n  the  other hand,  the  slope of the  radial  envelopes 

suggests tiat the  ZkTdard  Earth  value of the  semi-major axis may be closer 

$0 the  obserl.ed  value  than  that of GEM-1. Tbis  could  be  resolved by a calcula- 

tion  such as given above. 

For the cross t rack component, t he  t ime  scale of figures 4 and 5 are to3 

short  $0 make an accurate  estimate of the  discrepancy  in  the  right  ascension of 

the  ascecding ncde for  the Standnrc. Earth and the GEM-1 cases, a6 described 

by equation (17). 

In this  section, we have  attempted  to r d w e  thc  analysis of the  cross  and 

radial tracking errors given by equations (1) and (2) above, to  an  analysis of 

the  resultant  behavior of the interference of two  u:le-dimensiona! 'cc!er-+ial 

mechanical wave trains'.  These  results,  namely r;quations (13) and (17), then 

describe  the  behavior of,  and the  discrepancies  bekeen,  the computed  and 

observed  values of the  orbital  parameters  for a given  potential or  gravitational 

field  for  any arc of the  orbit.  The  radial  wave  equation  gives  information oa the 

semi-major axis, the  eccentricity and to a limited  extent,  the  argument of perigee. 

The  cross  track wave  equation  gives  information on the  right  ascension of 'A$ 

ascending n d e  and the  inclination.  Thus,  five of the  six  orbital  parameters are 

examined by this  procedure.  This  leaves only  the  mean  anomaly. To accurately 

assess its behavior  and  any  discrepancy  between  the  observed  and  computed  value 

of rhis parameter, it is necessary to make a careful  analysis of the  corresponding 

in-track  error  component.  From  Kepler's  law, it is obvious  that  for  different 

i 
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values of the  sidereal  mean  motion, two orbits will sweep  out di ferent  equal 

areas  and  different values of the  true  anomaly  in  equal  times.  From  the  anomaly 

connections  between  the tr-le and eccentric  anonaly and asing  Kepler's  law,  the 

mean  anomaly, 

M = E - c  s i n &  

will vary  accordingly. 

I 

IV. FREQUENCY EQUATIONS 

In the previous  section we discussed  the  analysis of the  tracking  errors by 

relating their behavior to uncertainties  in the orbital  parameters. By this 

approach, w e  wish  to  ascel  tain  the  degree  to which these  orbital  parameters 

arc involved in  the  accuracy of the  trajectory  calculation.  In  this  section 

however, we attempt  to  relate  the  behavior of the  radial and c ross   t r ack   e r ro r s  

to certain of the  coefficients of thc  Earth's  gravitational  field. As a  result,  some 

information can be  derived  from the  relationship  between  these  orbital  parameters 

and the  values of gravitational  coefficients  used  in  the  calculations. 

As a starting point for our calculation,  let us consider  the following expres- 

sion for the  gravitational  potential V(r ,  0). written  in  terms of an expansion  in 

spherical  harmonics: 

m 

r 
n r  1 

. .  

17 
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In addition, we also  consider  the following  problem: A spacecraft  represented 

by a point mass  moves  in  orbit  about a planet  whose  gravitational  potential is 

giveu 3: equation (23). At some  time which we shall take  to  be  the  epoch.of  the 

orbit, an instantaneously  small'but  finite  impulse is applied to the  point  mass. 

The  problem is to  describe the subsequent  motion. We note  that  the  impulse 

has the effect of distrirbing  the  coordinates of the  satellite at this initial or 

epoch time, while the  potenlial  field is constant.  The  Hamiltonian for this 

system, which is also the total  energy,  can  be  written as 

= E = - m i 2  + - mr282 + - m r '  s in2 0 2 2  t V(r. 5) .  (24 1 1 1 1 
2 2 2 

Hcre, the  geocentric  right  ascension 4 is cyclic,  and as a result, its canonically 

conjugate  momentum 

p&-= mr2 s in2 $6 = c o n s t a n t .  (25) 

We may  intrcduce an effective  potential 'V'(r, 0) for  the motidirt 

If we now assume  that  the  colatitude  coordinate is held  fixed, and there is a 

erna l l  change in r only, then we have from equation (2.1). 

E - 'v'(r) = - m i 2 .  
1 
2 

! 
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Since  the  right Itand member  cannot  be  negative,  the  motion ITUS), be confined to 

those  values of r for which V ( r )  I E. The  relationship  between pd and the 

equilibrium  radius r- that is, the radius  prior to the  applied  impulse is, c" 

Combining  equa.tions (28) and (25) w e  have, 

From equations (24) and (28) the  equilibrium  energy is 

For an  energy  slightly larger than E?, and an angular  momentum p given by 

equation (28), the  coordinate r will  perform  simple  harmonic  oscillations about 

Q, 

t h e  value re. If we  set 

= d2'V'(r j d2V(r) + 3P; [ dr2  ] =(T)r m r t  sin' t, 
' 

'f E t 

Then for small values of !r - re;), we can expand 'V'(r) in a Tay lx   s e r i e s :  

'V*(r) = E + -- kr ( r  - r )2. 
1 

i ' 2  E 
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The  energy  equation (27). now becomes 

1 .  1 E - E ,  = - mr2 t kr ( r  - r, ,)2 
1. 2 c 

(33 1 

This is the  energy for a. harmonic  oscillator with energ" (E - E?), coordinzte 

(1. - rl), L mass  m, and spring  constant kr. Then For a small  impulse,  the radial 

component of the  radius vc :tor will oscillntc  about  the  equilibrium  value rm1 with 

a frequency  given by, 

I t   i s  of interest  to  compare a', and ;: : From (29) and (34) we have, 

lu other words, 1 e now have  the  frequency of oscillation of the perturbed radial 

component of the  radius  vector  in  terms of the  undisturbed or equilibrium  value 

of the  orbital  period as given by the motion of the geocentric  right  ascension, 

and  the first and  second  derivatives of the  gravitational  potential energy. A 

similar  argument for the colatitude angle 0,  yields the harmonic oscillator 

energy  equation, 

with energy (E - 9 ), coordinate (0 - t$), mass m2, and spring  constant k, 

given  by 

20 
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137)  

L 

I The  motion of the  geocentric  right  ascension In the  undis turkd mode i s  gi:.en 
f. . .  

bY 9 

;; I (F)) * (38) 

i 
mr2 sir. G ,  cos cL, - .  5 I 

. .- 

i .while alter the  impulse is applied,  the  colatitude aq;ular cornpownt of the  radius 

c 

vector  oscillates  about  the  cquiliixium  value I*, with a frequcncy  given by 

I 

i 
f The  relatiollsbips  between 'L@ and q-" is, 
i 

Here, the  frequency of the angular component is also given  in terms of t h e  

equilibriun: va!ue of the  orbitai  period,  and  the  first two derivatives of thc 

potential  energy,  but  with  respect to the colatitude. 

At this  point, it  is instructive to ctioosc some representations for the gravi- , 

tational potentia.1 given by (23) and calculate wr and c ' ' ~  for each case. 

21 
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Case I .  Let us  assume that the Earth i s  perfectly  spherical, and homogeneous 

in densit.y. The potentiai is then given by 

Here  then, 
- ,  .. . 

I 
i 

and 

d2V(r ) -  2p 

dr2 r 3  e 
" - 1  

and from equations (31) and (251, 

From (29). 

which yields, 

and 
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i n  which case, 

or, 

Since dV(r)/dB = 0 for  the  central  force  potcntid,  then we (g) = 0. Equation 

(47) is an oscillation in r superposed upon a motion  around  the z-axis with an 

angular  velocity  given by equation (29); $r(p, will vary  slightly a s  r oscillates, 

but will remain  very  nearly  equal  to the constant  value giver_ by equation (43). 

If our  reference  frame is rotated so that  the z-axis is always  perpendicular to 

the orbital  plane,  then  sin B = 1, and  eqaation (47) reduces to 

For  the case of t,he spherical Earth, the  radial  component of the  perturbed  radius 

vector  has  the same period of oscillation or rotation as that of the  orbit, and will 

execute  one  oscillation  per  revolution of orbit. 

Case 11. Ut us now consider  the case where  the  Earth is represented as a 

perfect  rotational  ellipsoid,  and its potential is given  by 

Proceeding as in the  above case we have  for  the rxiial component, 

23 

(49) 
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*. 

.. 

and 

For the 0 component, 

and 

(53) 

!54 1 

Equations (52) and (55) are again  referenced  to  our  original  fixed  inmtial  z-axis. 

By rotating the coordinate  system so as  to  make  the z-axis lie  perpendicular to 

the  orbital  plane, we again have  that s in 6' = 1. and cos  0 = 0, in  equation (52). 

while a rotation of x-coincidental  with  the  radius  vector wi!' make cos 6' = 1 in 
- 

i E 

I 

I 

r' 
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equations (55). A ir&formation of these  quantities  icto  the  planes of motion of 

the  trackingerrm-s are necessary  to  describe the  oscillatory  behavior of the 

latter in te:-ms of ut and crb . The  fact  that = C, for  the  spherical  Earth 

results of course,  from  the fact that we hzve  in  that case only central l x c e  

motion.. As a' result, if a small  impulse were applied  normal  to  the  plane of 

motion,  .the  effect would be o y to  changc  slightly,  the  in.?snation of the  orbit. 

It woulii however,  remair.  fixed  at  the new inclination. There would be no oscillatory 

motion' In 6 i The  second  case,  namely  that of an  Earth's  gravitationa.1  potential 

containing a zeroth, and second  zonal  har--mic  only is somewhat  more  interest- 

ing. Equat.ion (55) where  cos d = 1, indicates  that the 0 -component  executes 

one  full  cycle  per  revolution of the  orbit,  similar to the  radial  component  given 

by  equation (47) .  P-.ftc.r rotation,  eqcation (52) reduces  to, 

E 

Here, we have  included  the  sign of J2, t h e  coefficient of the  Earth's  second  zonal 

harmonic.  Since  the  magnitude of J, is approximatcly 0.10825 X ihen the 

coefficient of c $ ~ ( ~ + ~ ~ )  is only  slightly  less  than  unity.  This  means  that  the 

frequency of oscillation of the  radial  component of the perturbed  radius  vector 

is also slightly less than  the  rotational  frequency of t he  spacecraft  in  its  orbit. 
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From this then, t t z  :,eriod of revolution of the  radial  component  given by p, = 
r 

2 n / ~ ; ,  wil l  b ! ?:. ;zr tha? the  natural  period of ‘the-  orbit, P . - 2 r/$, . This 

frequency ! riirt, &id correponding  change  in  period is induced by the  inclusion 

t 

cr . -  

of the J2 ti? :n or second  zonal  harmonic  in  the  Earth’s  potential. A s  a result, 
.. 

the  mass  redistribution-is  equivalent  to a change in the spring  constant of a 

translatiohal  mechanicalxircuit or the  capacitance of the  electric& series 

circuit. In this case, our  results are now written, 

and 

In words, i f  a small but finib impulse is applied  to an Earth satellite in orbit 

about an Earth  described by a perfect  rotational  ellipsoid,  the  radial  component 

of the  radius  vector  will  oscillate  about  its  equilibrium  value with a frequeacy 

whose  value is . 

26 
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times  that of the  geocentric  right  ascension. The frequency  in B is identical to 

that of the  geocentric  right  ascension. Also, the indication  here is that we should 

expect a shift in both the  frequency oi the  radial and cross- t rack  errors ,  as 

either  the  number  of,  or  the  values of the  coefficients of the  gravitational  potential 

terms is changed. To show tha t  this may be true  also  for  the  angular  compclent 

we list the  results of calculations  for an Earth  whose  potential inchdes  the  zeroth, 

second and third  zonal  harmonics, and finally,  the  zeroth,  second,  third and 

fourth zonal harmonics. 

Case 111. 

Here, 



. . .  

3 0' 

. . .  

(64) 

and 

Case IV. 

V = i  r [1 +s(?)2 (3cos26- 
2 r  

. I? 

+ J, (:r (35 cos' 0, - 30 cos? 0 t 3 3 
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From  the  gereral  equations (36) and (40, one  can  obtain E, /w, and go / x a  for 

any  number of zonal  harmonics. It is of interest  to  comparc thc coefficients of 

p ,  or the brackett terms of $ andw: with the  expression for the  anomalistic 

mean motlon, 
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where'  no = (p/a3 )1,'2 for  central  force nrotion, a is the semi-major axis, and e 

is- the ezxritricity.  The  right hand side is expanded  through  the  coefficient of 

the  second  zonal  harmonic  only,  'and  can  be  compared to equations (50)  and (51) 

V. TIME AkTERAGZS . .  

Figures 6(a) and @) me pictorial  representations of translational  mechanical 

and series electrical  circuits. The general  differential  equations for these 

systems are 

(a) - + ' ~ d y + k y = F , c o s w t .  Md2y  translational  mechanical. 
dt2 dt 

Ld2i 4i i 
d t2 dt c 

@) - t R -  + - = - d o  sinwt.  series  electrical. (74 ) 

The  vertical  displacement  coordinate of the weight is y, M is the  vibr Zting 

mass, % is the  friction, k, the  spring  constant, F, and wF, t he  amplitude  and 5 

frequency of the  impressed  driving  force,  respectively. For t he  electrical 

case, 7, is the  icductance, c, the  capacitmce, R ,  the resistance, E, and the 

amplitude  and  fl-equency of the  impressed  voltage,  and i, the  current  coordinate 

flowing around the loop. If % (R) is zero,  then the system is a conservative one. 

If no driving  forces are present,  then  the  equations are homogeneous, and the 

natural or resonant  frequencies are given by I 
. I  

I 
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(75) 

! 

I 

The frequency  be  made  to  vary by ch.anging the equivalent mass or spring con- 

stant of the  system.  .In  our  problcm,  the’mass ic constant  but  the’restoring  force 

will depend  upon the  number of harmonics  in.thc  potential, or in  other  words, 

the  distributioi? of the Eartkl’s mass. From our  results above, if .we take J, to 

be approxirnately Jz = -1.0825 x 2, = 2.9450 x and J, = 1.6715 x l d 6  

where p = 1, then  the effect of including  the  third  and  fourth  zonal  harmonics 

is to shiftthe  value of wr and we, opposite  to  thzt of J, . However, since J, is of 

the  order of lo3. times J3 or J, , the latter effect is very  small. In any  event, 

equations (35) and (40) predict a phase  shift due to uncertainties and variations 

in  the  terms of the gravitational  potential.  Tke  amplitude of the oscillation  for 

a free, conservative  system,  representing a solution of equations of the  type (74) 

is given by 

N = N, cos(Let + 

for  the cross-track error, and 

R = % c o s ( w ,  t t 6,). (77 1 

for the radial  uncertainty. Here No and 13, me the  maximum  error  amplitudes 

for each case, and i3 is a corresponding  phase ayle. Since the epoch  times  are 

taken to be the  same  for both  observed and computed &ta, then the phase angle 

is set equal to zero. Let us now examine  the  time  averages of the c o s s  and 

32 
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radial  uncertainties.  The  time  averages of equations (76) and (77) are obtained 

by integrating  both  sides with respect  to t from 0 to T ,  and  dividing by 7 : 

ir Nd t = I Lr No cos &la t d  t = - - [COS ( W ~ T )  -. 13 1 No 
7 we 

: (78) 

Since No and ug are constant, when L& T = 2x177, where n = 0 ,  1, 2, . . . , then, 

7 r N t l t  = 0. (79) 

That  is ,  if 7 is chosen  to  be  the  period, then (78) vanishes.  Even if u0r is not 

an integer  multiple of 2n, the  maximum  value  that  the  bracket  porYon of (78) can 

be is 1, but  choosing 7 sufficiently long, the  right  hand  side of (78)  can  be  made 

as small  as desired. In this case, 
I 

Similarly, 
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VI. CONCLUSIONS 

In  section IlI, we  obtained  relationships  between  the  behavior of the  radial  and. 

cross   t rack  errors  and  uncertainties  in  the  orbital  elements. In section IV, we 

found.the  equations  relating  this  behavior to certain  terms.of  the  Earth's  gravi- 

tational  field. An examination of figures 2, 3, 4, and 5, indicates t h s t  the  tracking 

errors.oscil late  harmmically with a frequency  close  to  that af the 'orbital fre- 

quency. The wave interference  analysis. shows that  the  radial  frequency is one 

half the sum of the observed and  computed orbital  frequencies.  These  frequencies 

are functions of the  semimajor &is of the orbit. 'The analysis of section IV  shows 

that  except for the case of a spherical  Earth,  the  radial  frequency is a function of 

the  gravitational  potential  energy and ihe  orbital  frequency. Both results are 

consistent  in  that  they  show a proper  freqlency or phase shift for the radial 

oscillation.  Results for t he  cross   t rack case are similar,  except  that  this 

phase  shift doeP not  appear  until  the  computation  potential  includes  the  third 

zonal  harmonic or higher.  This  indicates  that  quantitatively, there appears  to 

be a lack of uncertairty  in  the  eccentric  anomaly and argument of perigee for 

the  spherical  Earth case, which is reasonable,  since  the  orbit  is  then bound and 

closed and completely  determined with full  accuracy for all  time. 

From these considerations,  there emerges the  following  physical  picture 

for the tracking e r r o r  problem:  The  Earth-satellite  system and the  corresponding 

orbit  di:erences are considered as a harmorkc  oscillator  system  whose 

frequency is determined by the ratio of t he  spring  constant  to  the mass for the 

34 
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case of a translational  mechanical  system, or by the  inverse  product of the 

ifiductance  (inertia)  times  the  capacitance  (elisstance) for an electrical series 

circuit. In our case, the  spring  constant? or capacitances are d e s c r i b d   i n  

terms. Gf the  first  and  second  spatial  derivatives of the Earth's  potential.  The 

gravitational  potential, which as a solution of Laplace's cquation,  involves  here, 

only  the ordinary Legendre  polynomials,  and  these in  turn,  are  determined by the 

distribution of mass i n  tl;e Earth.  This  distribution  therefore is described by the 

assigned  values of the coefficients of these  zonal  harmonics. 

The results we have  obtiined  in  this  paper are valid for :onservEtive  systems, 

namely  those  in  which thc total energy  and  angular rnomentctm are conserved. 

The  frequewy  equations  that we developed  in  section XV, a s m m e  an azimut;lal!y 

symmetric potential.  Because of this, the correspooding  canonical  momentum 

is a constant of the motion, and this led us to our analytic  expressions :or the 

tracking  frequencies a s  functions of the  potential. An important technique in 

theoretical  physics is to look for symmetries within  the  system. For each 

symmetry,  there  follcws a conscrvation law, which simplifies  calculation of 

physical  properties of the  system.  This  approacn.  combined with the  method 

of solution by  separable  Hamiltonian,  makes it possible to do the  gravitational 

theory cf a satellite orbit  very  accurately,  and without the usc of pcrtuhation 

theory (References 5, 6). In addition, a method has  been  developed  (Reference ' I )  

which permits  separation of the  Hamilton JacotJi equation  in  the  presence of a 

nonconservative force such as air drag.' In this case, the a:mosphcric density 
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is incorpora:ed  into  the  equations of motion in an analytic  fashion by fitting an 

exponential  form  to an accurate  density  profile. This allows one  to  integrnte 

t h e  variational  equations of the orbital  elements  due  to air drag  in  terms of 

elementary  functions.  This  then has the  effezt of advanciq,  the  boundary  condi- 

tions on the Ilamilton-Yacobi  equation. As a result ,   i t  is. possible  to  include 

. .  

atmospheric  resistance in  orbital  error  analysis. 

It is expected  that  the  results  obtained  here  especially those' of sections XI1 

and IV,  are to  be  extended  in  forthcoming  ailaiyses  to  more  detailed cases such 

as given  in figures 4 and 5. for  GEOS-II. 
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FIGURE CAPTIONS 

". r1gu-k 1. Two waves of nearly  equal  frequeacy  (a)  and  with  equal  magnitudes, 

(h; a r e  differenced, (c)  to give  a Fva5.e v&ose  xnnplitude (dabhed line)  var- 

ies  periodically. The effect  desczibed from (b) to (c) is commonly 

referred  to  as the  phenomenon of beats. 
i 

Figure  2(a).  Short  term view of the radial e r ro r  for the  Cannonball  satellite. 

Figure 2@). ExpaAded  time  scale €or the  radial  error of the  Cannorhall  satellite. 

Figure 3. Expanded time  scale of the  cross  track  error  for  the Cannonball 

satellite. 

Figure 4. Tracking  errors  for  the GEOS-I1 satellite  using GEM 1 (doppler data). 

Figure 5. Tracking  errors  for  the GEOS-LI satellite  using 69 S A 0  Standard  Earth 

(doppler  data). 

Figure 6. Physical  systems whose natural  frequencies are equivalent  to  tracking 

e r r o r  oscill.ations. 
I 
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Figure 1. Two waves of nearly  equal  frequency  (a) and with equal  magnitudcs, @) are dif- 
ferenced, (c) to give a rave whose  arn?litudo (dashed Itnc) vnrics pcriodicdly. The 
effect described from @) to (a) is commonly referred to as :he phenomenon or' beats. 
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Figure 2(a). Shcrt &FZI view of the radial error for the Cannonball satellite 
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Figure 2(b). Expanded time scale for the radial error 
of the Cannonball Eatellite 
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Figure 3. Expanded time scale of the cross track error 
for the Cannonball satellite 
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Figure 4. Trac’king errors for the GEOS-I1 satellite 
using GEM 1 (doppler data) 
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Fiwg-e 5. Tracking errors for the GEOS-II satellite 
using 69 S A 0  Standard Earth (doppler d a t a )  
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(a) TRANSLATIONAL MECi-iANlCAL CIRCUIT 
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(b) SERIES  ELECTRICAL  CIRCUIT 
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Figure 6. Physical systerx whose natural frequencies are equivdent 
to tracking error oscillations 
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